COURSE FOCUS

This course takes the ideas developed in *IDSEM 1740 Bridging Culture and Nature* and provides students with a learning environment to apply these principles and tools in real world contexts. A key premise behind the class is that managing nature and protecting biological diversity and ecosystem functions ultimately requires us to manage ourselves – the amount and way we choose to use natural resources, and the impacts of our behavior on nature. The science of conservation biology has evolved over the past 40 years to produce practical tools to support this self-management, and its practitioners rely on experience and expertise that cuts across all professional disciplines. The fieldwork of the physical and biological sciences provides the foundation from which biodiversity conservation decisions can proceed. However, the applied work of the social sciences, education, business, humanities and arts provide the tools we need to manage ourselves and create a relationship with nature that supports our human needs and desires without impeding or threatening the lives and habitats of the millions of other species with who we share this planet.

Applied Conservation Biology will provide students with an opportunity to use the key ideas covered in Bridging Culture and Nature to solve specific conservation challenges. Students will
explore specific natural and social science tools used to frame risks and threats to nature, and then test methods to plan and implement practical solutions that can help avoid, mitigate, or offset these threats.

Students will also have an opportunity to test their understanding of these principles by developing a practical conservation strategy designed to respond to threats and risks to biodiversity in a specific project site. You will prepare your conservation strategy by first forming three teams, with three people per team. Each team will then select a site-based project from a menu of project options. Each site-based project will reflect a real world threat to biodiversity, and one that practicing conservation biologists are actively trying to solve. The student teams will then work collaboratively through the remainder of the semester to research the risks and threats to biodiversity in their project area, and then develop a detailed proposal for a project that can respond to and help resolve these risks and threats. Each team will research lessons learned from anthropology, social psychology, economics, biology, communications and the arts, and use the findings to produce an original concept that is thorough, evidence based, and achievable.

“Evidence based conservation” requires practitioners to plan and make decisions by integrating the most convincing technical information available with expertise from working professionals to tell a clear and convincing story that will engage stakeholders in acting to make a difference. The actions that result will bring together the characteristics, needs, values, and preferences of all affected stakeholders.

Each group will ensure that their final proposal incorporates all of these factors.

In order to meet these evidence-based standards, each team will produce a proposal that includes the following components:

- **Biology** – A description of the ecological context in the project area, including a summary
of the types, source, extent, and magnitude of threats to biodiversity and cultural integrity in the selected project area, and recommendations for indicators and parameters to be measured and monitored to demonstrate the results from any interventions that will be proposed.

- **Society** – A detailed description of social groups, cultural practices, government and institutional framework (including legal characteristics), and economic characteristics of the project area. This summary will then be linked to specific interventions that will be proposed to help avoid, mitigate, or offset the threats to biodiversity and natural resources. The proposed interventions can include new government or corporate policies to affect corporate behavior, financial transactions, and rural livelihoods; improved practices to reduce adverse impacts throughout the supply chain for commercial products; improved practices to reduce adverse impacts from new or improved infrastructure and energy supply; trade agreements; and other management practices that can be promoted as a response to the identified risks and threats.

- **Sanctity** – A description of the philosophical, spiritual, religious or related value driven characteristics of the affected stakeholders. This summary will then be linked to education, communications, and social engagement work to be carried out to change people’s behavior in the project areas, and create more beneficial interactions with nature. Students will identify specific target audiences for communications and education work, and elaborate sample lessons they will use to convey their story.

Course Objectives

- Develop familiarity with scientific literature on biological diversity, nature conservation, and sustainable uses of natural resources.
- Explore tools and media to monitor, evaluate, and communicate strategies to influence social and economic decisions affecting the conservation of biodiversity.
- Develop practical skills in the design and communication of biodiversity conservation projects.
Readings and More

The required textbook for the class is:

If you decide to purchase this book then I recommend ordering it from the Sinauer web site (15% discount). However, I also found 6 semester-length rental options for this book under $30: http://www.textbookrentals.com/prices/9781605352893-essentials-of-conservation-biology-sixth-edition.

This text will serve as your principal sourcebook for much of the material we will cover in class and will be a useful reference text if you decide to continue to work with conservation biology themes in the future. However, we will also supplement the material in this text with many other readings and viewings, and all assigned materials are posted in digital format on the NYU Class page in a folder labeled with that week’s class topic. A list of required semester readings is also included in this syllabus. A total of approximately 30 reading assignments will be completed for the class, in addition to the readings assigned from the textbook. However, other readings and viewings will be added during the course of the semester, and some of these will be found and identified by you during the course of our work together. Any additional readings will be emailed to you and posted on the NYU Classes page at least one week in advance. This allows us to keep up with the constant and rapid turnover of insightful writings that are constantly emerging in this very vital field.

I also recommend you get a copy of the following text (free) for your library:

This text is available for free online at the following address: https://conbio.org/publications/free-textbook/. A PDF copy is also available to you in the Resources section of our NYU Class page.

Students who feel they need additional background materials in conservation biology to support their work in the class are strongly encouraged to selectively explore one or more of the following texts:

Gallatin_Adv Conservation Biology_Spring 2016 Syllabus
Meffe, Gary K., Larry A. Nielsen, Richard L. Knight, and Dennis A. Schenborn, 2013. Ecosystem Management – Adaptive, Community-Based Conservation. Island Press, Covelo, CA, ISBN: 9781610914888, published April 2013, 336 pp. (We will be reading a great deal of the information from this sourcebook, and it is an excellent reference to have if you plan to continue working in this field.)

Luigi Boitani and Todd Fuller, Research Techniques in Animal Ecology, Columbia University Press, 2000

COURSE REQUIREMENTS

We will cover three core themes during the course of our practicum:

- **Biology** – in this section we will explore the biological and ecological factors that form the foundation of successful conservation projects. We will explore the scientific principles that support effective conservation biology in practice.

- **Society** – during this section of the class we will look more closely at how human decisions affect natural systems, and the conservation biology projects that are designed to sustain nature. We will examine how agriculture, forestry, extractive industries, and others alter landscapes and ecosystems, and how these businesses can adopt more “green” practices to reduce or offset these impacts. We will examine some of the economic, finance, and policy principles that support effective conservation biology.

- **Sanctity** – in our final two classes we will look at how conservation biologists can engage civil society and the general public in the work of conservation biology. We will specifically look at the role of communication and education programs and spiritual and religion values to support this greater civic engagement.

Each class will be divided into three sections –
(1) The first 90 minutes will be an overview of some key concepts around the week’s theme. I will lead this overview. But, it will never be a lecture. It will always be a dialogue. Therefore, your preparation and participation is key to building the learning experience for everyone in the course. And, your ultimate grade in the class will be dependent on it.

(2) During the second 30 minutes, one student in the class will lead an activity and group discussion on a topic of their choice that pertains directly to the week’s theme.

(3) During the final 30 minutes, each student team will work on their respective project – student teams will use this time to identify research needs, share new information, and plan individual and shared work tasks to complete their semester project. This time will also be available for open discussion and investigation into challenges and issues pertaining to your group project.

To Summarize:

Participation: The core of this class will be our discussions of topics that explore the theory and real world applications of relationships between cultural, social, and ecological systems. Thus your presence and participation in the class will be an important element in your overall success in the course. Most classes will be shaped as much more of a dialogue than lecture, and students will be expected to bring questions, experiences and ideas to each dialogue. Each class will include readings on the week’s topic and the materials in these readings will stimulate and facilitate our dialogues.

Group Activity Sessions: Each student will sign up to lead one 30-minute activity session during the semester. The student leading this session will prepare a short activity designed to engage fellow students in a practical analysis of the topic, and include questions based on your activity that can guide a deeper dialogue on the topic. Examples of activities could include demonstrations of tools or methodologies for carrying out conservation biology fieldwork; videos or other audio-visual displays; short exams; construction, drawing, or writing projects; games; role-plays, or on line research. The activity should comprise approximately 15-20 minutes of the session, with the remainder of the time devoted to discussion. A sign up sheet
will be provided the first week of class in which students will select a topic and the week in which they want to lead the class activity. The student leading this activity must submit their proposed activity to me at least 48 hours before the class begins.

Each student-led activity and discussion will be graded on organization, presentation, and engagement of the class. A sign-up sheet for the session in which you will lead a group activity will be posted at the end of the first class.

Very Important - “Student Choice” Class Meetings – The last class in each theme section will explore topics selected by the students, and the class will be designed to integrate and complete the theme. Each student will select one or more specific topics within the theme that they would like to explore more deeply, and they will lead a 15-20 minute discussion of that topic during our “Student Choice” meeting. For example, within our study of the “Biology” theme a student may want to explore how wildlife monitoring programs are carried out in the field, and specifically how non-invasive techniques can be used to study wildlife without disrupting or harming them in the process. The student will need to do some background research on non-invasive inventory and monitoring techniques, and will then lead a 15-20 minute review of this topic. They will solicit input, creative thinking, and guidance from other students (and from me) to arrive at a deeper understanding of their chosen topic.

Students can choose to work in teams of 2 or 3 on these “Student Choice” topics, if their topics overlap. In this case, we can devote more time for the discussion section.

Each student, or group of students, will email me a description of the specific topic they want to cover during the “Student Choice” class meetings. They will also assign and distribute any references they want the other class members to review prior to our class meeting. The topics must be emailed to me no later than 3 days prior to our class meeting, and the supplemental references distributed no later than 2 days prior to our class.

Blog Entries on Weekly Readings: Each student will submit a concise blog entry each week providing commentary on the readings and personal observations around the upcoming weekly topic. Your blog entry must be between 250-300 words, and must directly pertain to the topics raised. Your commentary can be structured as a personal essay, commentary, or

Gallatin_Adv Conservation Biology_Spring 2016 Syllabus
scientific critique of the readings and topic. Blog entries should include the weekly topic in the title, and should be posted in the Forum section of our NYU Class page. Your blog entry attachment must be posted no later than 10am on the day of class. You do not need to post blog entries for the “Class Choice” topic classes (February 23, April 6, and April 27), or for the final project presentation class on May 4.

Supplemental Research to Identify New Reference Materials: Each student will identify at least two new readings, audio, or visual references for each class topic. Your two new reference materials should be selected to help expand our understanding of the relevance and importance of each class topic. At least 1 of the supplemental readings, or audio or visual reports that you identify and evaluate must be scientifically based, and thus obtained from a peer-reviewed scientific journal. The other reference can be obtained from any source of your choice, including popular journals and magazines, books, blogs, podcasts, or similar sources. A citation for your recommended supplemental materials should be posted in the Forums tab of our NYU Class page, along with a very concise 50 word or less summary of the key points in each reference. Insert the wording “Supplemental Readings for ____ class” and your name in the “Topic Title” tab. Your supplemental materials must be posted no later than 12pm of the day of the class topic that you have selected. You should also be prepared to discuss these supplemental readings during the class period. You do not need to produce references for the “Class Choice” topic classes (February 23, April 6, and April 27), or for the final project presentation class on May 4.

Final Project Report: Students will form teams of 3, and each team will prepare a comprehensive conservation strategy to respond to conservation risks and challenges in a selected target area. The student groups will select one target area as the focus of their research from the following menu of options:

- A biodiversity conservation strategy to support and update the Ulster County, NY 2007 Open Space plan
- An ecosystem restoration and enhanced livelihoods strategy for coastal and near shore environments affected by the Deepwater Horizon oil spill in the Gulf of Mexico.
- A menu of options for the Western Indian Ocean Coastal Challenge (WIOCC) to support conservation of the coastal and near shore marine environments in the region of...
Madagascar, Comoros, Mauritius, La Reunion, and Seychelles.
• The freshwater and marine ecosystems of the Pacific Northwest in North America, with a particular focus on managing impacts in the commercial fisheries sector.
• A strategy to enhance marine conservation in a rapidly opening Cuba.
• Develop an education and communication strategy for the New York Seascape Program
• Restoration of the wolf, mountain lion, and lynx in New York and New England states
• A strategy to reduce the trade in illegal species in Southeast Asia and China.

Students can also propose their own project area and focus, but it will be subject to approval by me.

The student team will carry out a comprehensive research and planning activity for their selected geographic area, and each team will produce a proposed conservation strategy for a specific area of concern in their selected area. The conservation strategy will include the following four components:

• **Biological Assessment** – an analysis of the biological and ecological characteristics of their delineated area of concern, and identification and prioritization of the risks and threats to biodiversity, and survey of opportunities for increased conservation.

• **Socio-Economic Assessment** – an analysis of the social, institutional, and economic characteristics in the delineated area of concern, and identification of constraints and limitations to enhanced conservation, and survey of opportunities for increased conservation.

• **Communication and Engagement Assessment** – a survey of work being carried out by organizations and institutions actively engaged in conservation efforts in the delineated area of concern, and a determination of communication needs, opportunities, and requirements in order to increase awareness and appreciation for conservation priorities.

One student from each team will be assigned to lead each component, and the component leader will be responsible for soliciting support and input from other team members as needed. The team will collectively use the results from this assessment work to produce an integrated conservation strategy for the selected target area. The strategy will include a summary of the findings from the three component assessments, and detailed recommendations for actions.
necessary to strengthen biodiversity conservation in the target area. The final strategy will include a written report, and a formal presentation using PowerPoint, Prezi, or other visual tools to summarize the findings in the written report. The final report will be structured as a proposal that can be submitted to obtain financial or institutional support for the recommendations made by the class. The final report should describe the research work carried out; the results derived; lessons learned from your experience; and recommendations for follow-on actions that can be carried out to further develop the work that you have started. The team report can be organized and structured in any fashion that the class chooses. However, the report must be no greater than 25 pages in length and should include, in one form or another, the following information:

Executive Summary – a 1-2 page summary of the key points included in the report

Problem Statement – a concise description of the specific conservation problem(s) your team identified and studied in the selected target area. This should include a description of the key conservation risks, threats, and opportunities that were identified by the three component leaders (recommendation: 3-5 pages)

Methodology – a description of the methods and sources you used to produce the cumulative team results. (recommendation: 1 page or less)

Results Summary – In this section you will summarize the findings and conclusions drawn from the analysis of the three components. You can structure this section of the report any way you like, but be certain to cover the following factors: what are some of the specific biological actions that are already in place to conserve biodiversity? Where are there gaps in this conservation, and what may be constraints to bridge those gaps? What social, institutional, and economic changes are occurring to support these conservation efforts and needs? Where are there opportunities for greater engagement of civil society and the private sector in these conservation needs? Be creative, but also be realistic and practical in your analysis or results and identification of needs and opportunities.

Conclusions and Recommendations for Further Actions – This section of your report will use the results from your analysis work to show the next steps that are needed to move your proposed strategy forward. This section should assess the changes and actions that may be required to achieve these recommended next steps – institutionally, socially, and financially. You will get extra credit if you estimate and include a budget for implementation of these next steps. (recommendation: 2-4 pages)
References

Individuals contacted (if appropriate)

Appendices (if any) – include here tables, graphs, photos, and other materials that will help support the descriptive information in your report.

Final Project Presentation: Each team will deliver a 45-minute presentation on their conservation strategy during the last class meeting. The presentation will include a 30-minute summary of the material included in their strategy, and 15 minutes of open questions and discussion. You will present to your other class members, although I will also likely invite other faculty and professionals to join and view these presentations.

The final report and the PowerPoint or Prezi presentation will be delivered on or before the date of the scheduled final exam for the class.

Grading: Your final grade will be based on your cumulative score from 6 factors: (1) class participation, (2) your class presentation and discussion session; (3) your Student Choice class discussion sessions; (3) blog entries on the week’s assigned readings; (4) identification and review of 2 new reference materials relevant to each class topic; (5) a take home final exam, and (6) a final team project. Your final grade will be based on a possible 100 points to be determined as follows:

- Overall class participation (20 points)
- Class presentation and discussion session (10 points)
- Student Choice class discussion sessions (15 points)
- Blog entries on assigned topics (15 points)
- Supplemental research on assigned topics (15 points)
- Final project (25 points total)

Incomplete grades: Students anticipating constraints to completing all course assignments must notify the instructor no later than the 9th week of the semester.
<table>
<thead>
<tr>
<th>CLASS</th>
<th>DATE</th>
<th>TOPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jan 26</td>
<td>Introduction and Class Overview – What is Conservation Biology? - course schedule, requirements, expectations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class Preparation Materials:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primack, Essentials of Conservation Biology, Chapters 1, 2, and 3, pp. 3-69</td>
</tr>
<tr>
<td></td>
<td>Feb 2</td>
<td>Conservation at the Population and Species Levels – species protection strategies and the problems of small populations, reintroduction strategies, ex-situ conservation strategies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class Preparation Materials:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primack, Essentials of Conservation Biology, Chapter 8 “Vulnerability to Extinction” (pp. 157-174), Chapter 11 “Problems of Small Populations” (pp. 249-273), Chapter 12,Chapter 13 “Establishing New Populations” (pp. 297-313).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meffe, Gary K., Larry A. Nielsen, Richard L. Knight, and Dennis A. Schenborn, 2013. “Genetic Diversity in Ecosystem Management”, Chapter 5 (pp. 115-129), “Issues Regarding Populations and Species” Chapter 6 (pp. 131-138, and “Populations and Communities at the Landscape Level” Chapter 7 (pp. 145-162) in Ecosystem Management – Adaptive, Community-Based Conservation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optional:</td>
</tr>
</tbody>
</table>
| Feb 9 | **Conservation of Ecosystems and Landscapes** – Establishing and managing public and private protected areas, managing invasive species and disease threats

Class Preparation Materials:

- Primack, Essentials of Conservation Biology, Chapter 10 “Overexploitation, Invasive Species and Disease” (pp. 217-245), Chapter 15 “Establishing Protected Areas” (pp. 343-367), “Restoration Ecology” (pp. 441-461)

- Meffe, Gary K., Larry A. Nielsen, Richard L. Knight, and Dennis A. Schenborn, 2013. “Landscape-Level Conservation”, Chapter 8 (pp. 169-185) and “Managing Biodiversity Across Landscapes: A Manager’s Dilemma” Chapter 9 (pp. 193-216) in Ecosystem Management – Adaptive, Community-Based Conservation.

Optional:

Sodhi, Navjot S. and Paul Ehrlich, 2010. Conservation Biology for All. Chapter 3 “Ecosystem functions and services”, pp. 45-72, Chapter 4 “Habitat Destruction” pp. 73-87, Chapter 5 “Habitat Fragmentation and Landscape Change”, pp. 88-106

Clewell, Andre F. and James Aronson, 2013. “Overview”, Chapter 1 (pp. 3-13), and “Disturbance and Impairment”, Chapter 3 (pp. 33-51) plus Case Studies (pp. 53-70) in Ecological Restoration, Island Press.

Feb 16

Setting up Biodiversity Monitoring and Measurement Programs

Class Preparation Materials:

Primack, Essentials of Conservation Biology, “Applied Population Biology” (pp. 275-295),

Feinsinger, Peter, 2001. Designing Field Studies for Biodiversity Conservation, Chapter 2 “The Inquiry Process” (pp. 9-19), Chapter 3 “So What’s the Question?” (pp. 21-28)

Gallatin_Adv Conservation Biology_Spring 2016 Syllabus
Optional:

Frank J. Mazzotti, Nicola Hughes, And Rebecca G. Harvey, 2007 Why Do We Need Environmental Monitoring for Everglades Restoration? Department Of Wildlife Ecology And Conservation, UF/IFAS Extension Service. 3pp.

ONE PAGE OUTLINE OF PROJECT PROPOSAL DUE

Feb 23
Class Choice for Today’s Topic (determined Feb 18) – Integrating the Biological Solutions to Conservation Threats

Class Preparation Materials: TBD

SOCIETY

Mar 2
Conservation in Working Landscapes – managed forests, conservation agriculture, urban wilderness, restoration ecology

Class Preparation Materials:
Primack, Essentials of Conservation Biology, Chapter 17 “Managing Protected Areas” (pp 391-417), Chapter 18 “Conservation Outside Protected Areas” (pp. 419-438)

Meffe, Gary K., Larry A. Nielsen, Richard L. Knight, and Dennis A. Schenborn, 2013. “Working in Human Communities”, Chapter 10 (pp. 219-239), and “Strategic Approaches to Ecosystem Management” Chapter 11 (pp. 245-261) in Ecosystem Management – Adaptive, Community-Based Conservation.

Optional:

Clewell, Andre F. and James Aronson, 2013. “Recovery”, Chapter 4 (pp. 73-87), and “Ecological Attributes of Restored Ecosystems”, Chapter 5 (pp. 89-112) in Ecological Restoration, Island Press.

Leroux, Shawn J. and Jeremy T. Kerr, 2012. Land Development In And
<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar 9</td>
<td>Creating Green Businesses – Direct and indirect economic values of</td>
</tr>
<tr>
<td></td>
<td>nature – economic valuations of species and ecosystems, non-consumptive</td>
</tr>
<tr>
<td></td>
<td>use values, risks of economic valuation; incentives to businesses to do</td>
</tr>
<tr>
<td></td>
<td>no harm, certification and good practice standards, green agriculture</td>
</tr>
<tr>
<td></td>
<td>and forestry creating a “green economy”</td>
</tr>
<tr>
<td></td>
<td>Class Preparation Materials:</td>
</tr>
<tr>
<td></td>
<td>Primack, Essentials of Conservation Biology, Chapter 4 “Ecological</td>
</tr>
<tr>
<td></td>
<td>Economics” (pp. 75-93), Chapter 5 “Indirect Use Value” (pp. 95-115)</td>
</tr>
<tr>
<td></td>
<td>the Planet’s Biodiversity Also Provides Ecosystem Services”, From:</td>
</tr>
<tr>
<td></td>
<td>Solutions – For a Sustainable and Desirable Future, Vol. 2, Issue 6,</td>
</tr>
<tr>
<td></td>
<td>pp. 87-95, December 2011, pp. 87-95.</td>
</tr>
<tr>
<td></td>
<td>World Resources Institute (WRI) in collaboration with United Nations</td>
</tr>
<tr>
<td></td>
<td>Development Programme, United Nations Environment Programme, and World</td>
</tr>
<tr>
<td></td>
<td>Optional:</td>
</tr>
<tr>
<td></td>
<td>Ash, Neville, et al., 2012. “Assessing Ecosystems, Ecosystem Services,</td>
</tr>
<tr>
<td></td>
<td>and Human Well-being”. In Ecosystems and Human Well Being: A Manual for</td>
</tr>
<tr>
<td></td>
<td>Bishop, Joshua et al., 2010. TEEB – The Economics of Ecosystems and</td>
</tr>
<tr>
<td></td>
<td>Building Biodiversity Business. Shell International Limited and the</td>
</tr>
<tr>
<td></td>
<td>International Union for Conservation of Nature: London, UK, and Gland,</td>
</tr>
<tr>
<td></td>
<td>Switzerland. Read Chapters 3 and 4, pp. 24-101.</td>
</tr>
<tr>
<td>Mar 23</td>
<td>Using Finance as a Conservation Tool – changing the lending and</td>
</tr>
<tr>
<td></td>
<td>investment practices of banks and other financial institutions through</td>
</tr>
<tr>
<td></td>
<td>voluntary and regulated standards; conservation finance strategies.</td>
</tr>
<tr>
<td></td>
<td>Class Preparation Materials:</td>
</tr>
<tr>
<td>Date</td>
<td>Topics and Materials</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Mar 30 | **Adapting to Climate Degradation** – strategies to protect biodiversity in changing landscapes

Class Preparation Materials:

Primack, Essentials of Conservation Biology, Chapter 9 “Habitat Destruction and Global Climate Change” (pp. 205-215)

Optional:

Jenkins, Jerry, 2010. Climate Change and the Adirondacks – the Path to Sustainability, especially “How Much Could the Adirondacks Change?”, Chapter 4 (pp. 25-32), “What We Might Lose”, Chapter 5 (pp. 33-51).

<table>
<thead>
<tr>
<th>Date</th>
<th>Class Choice for Today’s Topic (determined during April 4 class) – Integrating the Social Solutions to Conservation Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 6</td>
<td>Class Preparation Materials: To be determined</td>
</tr>
<tr>
<td></td>
<td>1-PAGE STATUS REPORT ON FINAL PROJECT DUE</td>
</tr>
</tbody>
</table>

SANCTITY

| Apr 13 | **Engaging Civil Society in Conservation** – ethical values of biological diversity, working with faith-based communities, the role of NGOs in conservation |
| | **Class Preparation Materials:** Primack, Essentials of Conservation Biology, Chapter 6 “Ethical Values”, (pp. 117-130) |

Gallatin_Adv Conservation Biology_Spring 2016 Syllabus

https://www.youtube.com/watch?v=2jf9xrmUipl&feature=iv&annotation_id=521d35b1-0-28e7-83fa-89e015389fc&src_vid=hAHwDBYjQ28

Optional:

Apr 20

Communication Skills for Conservation Practitioners –

Class Preparation Materials:

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 27</td>
<td>Class Choice for Today’s Topic (determined during April 21 class) – Class Preparation Materials: To be determined</td>
</tr>
<tr>
<td>May 4</td>
<td>PRESENTATION OF STUDENT PROJECTS</td>
</tr>
<tr>
<td>May 12</td>
<td>FINAL REPORT DUE</td>
</tr>
</tbody>
</table>